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1 Solve the inequality (0.8)x < 0.5. [3]

2 The polynomial x3 + 2x2 + 2x + 3 is denoted by p(x).
(i) Find the remainder when p(x) is divided by x − 1. [2]

(ii) Find the quotient and remainder when p(x) is divided by x2 + x − 1. [4]

3 (i) Express 12 cos θ − 5 sin θ in the form R cos(θ + α), where R > 0 and 0◦ < α < 90◦, giving the
exact value of R and the value of α correct to 2 decimal places. [3]

(ii) Hence solve the equation

12 cos θ − 5 sin θ = 10,

giving all solutions in the interval 0◦ ≤ θ ≤ 360◦. [4]

4 The equation of a curve is x3 + y3 = 9xy.

(i) Show that
dy
dx

= 3y − x2

y2 − 3x
. [4]

(ii) Find the equation of the tangent to the curve at the point (2, 4), giving your answer in the form
ax + by = c. [3]

5 (i) By sketching a suitable pair of graphs, show that there is only one value of x that is a root of the
equation

1
x
= ln x. [2]

(ii) Verify by calculation that this root lies between 1 and 2. [2]

(iii) Show that this root also satisfies the equation

x = e
1
x . [1]

(iv) Use the iterative formula

xn+1 = e
1
x

n ,

with initial value x
1
= 1.8, to determine this root correct to 2 decimal places. Give the result of

each iteration to 4 decimal places. [3]

6 A curve is such that
dy
dx

= e2x − 2e−x. The point (0, 1) lies on the curve.

(i) Find the equation of the curve. [4]

(ii) The curve has one stationary point. Find the x-coordinate of this point and determine whether it
is a maximum or a minimum point. [5]
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The diagram shows the part of the curve y = sin2 x for 0 ≤ x ≤ π.

(i) Show that
dy
dx

= sin 2x. [2]

(ii) Hence find the x-coordinates of the points on the curve at which the gradient of the curve is 0.5.
[3]

(iii) By expressing sin2 x in terms of cos 2x, find the area of the region bounded by the curve and the
x-axis between 0 and π. [5]
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